A Novel Design Specification Distance (DSD) based K-Mean Clustering Performance Evaluation on Engineering Materials' Database
نویسنده
چکیده
Organizing data into semantically more meaningful is one of the fundamental modes of understanding and learning. Cluster analysis is a formal study of methods for understanding and algorithm for learning. K-mean clustering algorithm is one of the most fundamental and simple clustering algorithms. When there is no prior knowledge about the distribution of data sets, K-mean is the first choice for clustering with an initial number of clusters. In this paper a novel distance metric called Design Specification (DS) distance measure function is integrated with K-mean clustering algorithm to improve cluster accuracy. The K-means algorithm with proposed distance measure maximizes the cluster accuracy to 99.98%at P = 1.525, which is determined through the iterative procedure. The performance of Design Specification (DS) distance measure function with K mean algorithm is compared with the performances of other standard distance functions such as Euclidian, squared Euclidean, City Block, and Chebshew similarity measures deployed with K-mean algorithm. The proposed method is evaluated on the engineering materials database. The experiments on cluster analysis and the outlier profiling show that these is an excellent improvement in the performance of the proposed method.
منابع مشابه
A Novel Design Specification Distance(DSD) Based K-Mean Clustering Performace Evluation on Engineering Materials Database
Organizing data into semantically more meaningful is one of the fundamental modes of understanding and learning. Cluster analysis is a formal study of methods for understanding and algorithm for learning. K-mean clustering algorithm is one of the most fundamental and simple clustering algorithms. When there is no prior knowledge about the distribution of data sets, K-mean is the first choice fo...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کامل